
© 2004 IBM Corporation

Service Data Objects (SDO) 
Overview and Programming Model

Given by Greg Ackerman

(material shared from Martin Nally, Shane Claussen, and Brent Daniel)



2 Service Data Objects © 2004 IBM Corporation

Agenda

§ IBM/BEA Public Announcement
§ Introduction – what are the problems to be solved?  What are SDO’s goals?
§ Classifying Data
§ SDO Overview
§ SDO Architecture
§ SDO Topologies
§ Some Use Cases – XML, JDBC, EJB, Web Service
§ Applying SDO to a Sample Scenario
§ SDO Release Status



3 Service Data Objects © 2004 IBM Corporation

IBM/BEA Public Announcement



4 Service Data Objects © 2004 IBM Corporation

IBM/BEA Public Announcement
Technologies

§ IBM/BEA announce collaboration on three technologies (11/25/03)

1. Service Data Objects (SDO)
“Perhaps the most important of three standards being proposed, according to IBM and 
BEA officials, is the one for Service Data Objects. It provides a unifying programming 
model for data from heterogeneous data sources, including relational databases, XML data 
sources, Web services, and a range of different enterprise information systems. It offers a 
simpler programming model that also supports best-practice application design patterns, 
according to company executives.” –InfoWorld

2. Work Manager for Application Servers
Provides a simple API for application-server supported concurrent execution of work items. 
This enables J2EE- based applications (including Servlets and EJBs) to schedule work 
items for concurrent execution, which will provide greater throughput and increased 
response time for applications.

3. Timer for Application Servers
Provides a simple API for setting timers in an application server-supported fashion. This 
enables J2EE-based applications (including Servlets, EJBs, and JCA Resource Adapters) 
to schedule future timer notifications and receive timer notifications.



5 Service Data Objects © 2004 IBM Corporation

IBM/BEA Public Announcement
Press Quotes

§ "It is a goal of this collaborative work between IBM and BEA to offer our customers a simpler and 
more consistent platform for J2EE development.“
Rod Smith, Vice President, Emerging Technologies, IBM Software Group

§ "Some users, and certainly ISV partners, have been instrumental in showing us the light. They 
both have been innovating in a number of areas around Java APIs, and they have been looking 
for some commonality. [Users] encouraged us to get together and collaborate more closely to find 
some convergence.“
Scott Dietzen, CTO, BEA

§ “We faced feedback, especially from ISVs, which (were less interested) in new features that are 
WebLogic-specific than ones that were common with WebSphere.  This bridging strategy allows 
us to get common technology and certainly make it standard over time.”
Scott Dietzen, CTO, BEA

§ "The additional specifications being done between IBM and BEA results in significant engineering 
savings for Siebel, as it is now easier for us to build an application that runs on a variety of 
platforms.  The simplification of the programming model, enhanced ease of use, and additional 
power makes J2EE even more attractive to Siebel as an application platform.“
Ed Abbo, Senior VP of Engineering, Siebel Systems

§ "We are glad that IBM and BEA will be contributing their early work as input into JCP 
standardization efforts.”
Corina Ulescu, Sun spokesperson



6 Service Data Objects © 2004 IBM Corporation

Introduction

§ Service Data Objects (SDO) is a new data programming technology 

§ Aims to unify data programming across data source types

§ Provides support for common application patterns that are underserved 
today

§ Enable tools and frameworks to more easily query, view, update, and 
introspect data. 



7 Service Data Objects © 2004 IBM Corporation

Motivation

§ Today, application developers go to great lengths to implement common 
application patterns
§ Data Transfer
§ Data Binding
§ Disconnected Operations
§ Paging
§ Metadata description

§ Have to learn and use different APIs to access different data sources
§ XML, relational databases, EJBs, etc, all have different APIs, but often their needs are the 

same
§ SDO provides a higher level of abstraction

§ Simplifies data programming
§ Allows development tools to rely on a single programming model
§ Does not replace existing technologies – It simplifies them



8 Service Data Objects © 2004 IBM Corporation

The Problems

§ J2EE and the set of JSRs that extend it (over 200, not all closed) define a 
very complex programming model. This continues to get worse

§ The programming model is strongly technology-oriented – EJBs, 
connectors, web services, messaging, and so on. Current tools reflect the 
programming model directly – they do not start with “what do you want to 
do”, they start with “what technology do you want to use”

§ Many common application patterns require extensive, low-level coding
§ Asynchronous, reliable communication between components

§ Stateful services

§ Optimistic concurrency collision detection
§ Current tools help with programming the details of this programming 

model, but not much with the big picture



9 Service Data Objects © 2004 IBM Corporation

SDO Goals

§ Rapid, simple application development
§ Current J2EE programming models are too complex

§ Data-source independent data access
§ Today, there are many different models and APIs for data access in J2EE 

§ A single model reduces complexity

§ Data-centric data access
§ No behavior associated with data

§ XML integrated
§ Easy to transfer data between tiers/Web Services

§ Disconnected Model
§ Normal mode of operation for servlets and JSPs

§ Provides a performance advantage by reducing database round-trips



10 Service Data Objects © 2004 IBM Corporation

Definition

§ Service Data Objects (SDO)

“Service data objects is a specification for a programming model that unifies data 
programming across data source types, provides robust support for common 
application patterns, and enables applications, tools, and frameworks to more easily 
query, view, bind, update, and introspect data.”
Next Generation Data Programming: Service Data Objects, Beatty, Brodsky, Nally, 
Patel

§ Key messages:
1. Programming model specification

2. Unifies data programming across disparate data sources

3. Enables standard application development patterns

4. Enables tools and frameworks to be built to the consistent data model

§ Note: SDO, as a unified data representation model, provides a myriad of different 
value propositions as a function of its rule in a given enterprise application scenario



11 Service Data Objects © 2004 IBM Corporation

Service Data Objects
Summary of Goals

1. Provide unified and consistent data access to heterogeneous data sources
§ Simplified programming model for the application programmer

§ Enable tools and frameworks to work consistently across heterogeneous data 
sources

§ Result:
Dramatic simplification of the J2EE Programming Model

2. Provide robust programming model support for several J2EE best practice 
application patterns
§ Disconnected programming model

§ Custom data access layers based on common design patterns

3. Provide first class support for XML Schema, XML InfoSet, and XML data 
sources
§ XML/Java bindings (JAXB like capability)

§ JAX-RPC objects



12 Service Data Objects © 2004 IBM Corporation

Architecture



13 Service Data Objects © 2004 IBM Corporation

Architecture - DataGraph

§ DataGraph is an “envelope” object.
§ Contains a tree or graph of DataObjects

§ Points to the schema for the DataObjects

§ Can be used while disconnected from the original data source
§ Contains the change information for the DataObjects

§ Contains validation error information for the DataObjects

§ Implementation based on Eclipse Metadata Framework



14 Service Data Objects © 2004 IBM Corporation

Architecture - Mediators

§ Mediator responsibilities
§ Build a DataGraph and its associated schema

§ Apply changes stored in a DataGraph to the data source

§ Current Mediators
§ JDBC 

§ XML

§ EJB



15 Service Data Objects © 2004 IBM Corporation

XML and Data Modeling

§ XML has changed the landscape dramatically

§ Late 1999/Early 2000

§ XML v1
§ DOM v1 and DOM v2
§ XPath v1
§ XSLT v1

§ Last couple of years and future

§ XML Information Set (InfoSet) v1 (10/01)
§ XML Schema v1 (05/01)
§ SOAP 1.2 (12/02)
§ XQuery 1
§ XPath 2

§ Significant shift from viewing XML purely as a text-based format to a data 
representation formation 



16 Service Data Objects © 2004 IBM Corporation

XML Data Model vs Relational Data Model

§ Relational Data Model (RDM)
§ The way the data is written to disk is hidden

§ The “Relational Data Model” (primary keys, foreign keys, constraints, et al), 
represents the external view of the data

§ SQL provides a standard programming model for accessing the RDM

§ XML Data Model (XDM)
§ With XML InfoSet, the way the data is written to disk is hidden

§ The XML Data Model represents the external view of the data

§ XQuery/XPath provides a standard programming model for accessing the XDM



17 Service Data Objects © 2004 IBM Corporation

XML Data Model and Java

§ Common issue called “XML/Java Bindings”:
§ Define data using XML Schema

§ Generate a Java object from that XML Schema

§ What is the shape and use model of the Java object?

§ Common usage scenarios:
§ JAX-RPC Web Services – what’s the form of the returned object?

§ Reading an XML file on disk into a Java object

§ Today – the IBM, BEA, and Microsoft programming models are all divergent 
with respect to this issue



18 Service Data Objects © 2004 IBM Corporation

Application Data Spectrum

Schema Smart
Application “Stupid”

Application Smart
Schema “Stupid”

Relational
Data

Entity EJBs

Servlet
Request
Object

Relational
Data

Transfer Objects
Cargo Beans

JDBC
RowSets

UI Data
WBI

General Business
Object



19 Service Data Objects © 2004 IBM Corporation

Classifying Data Representation Models
Connected vs Disconnected Data
§ Connected data (or transactional data)

§ Data source dependent/aware (ie Connection object)

§ Examples: 
EJB Entity Beans, JDBC RowSets, and RDB Rows

§ Several J2EE technologies exist for either:
(a) representing transactional/connected data or 
(b) to access transactional/connected data

§ Disconnected data (or non-transactional data)
§ Data source independent/unaware

§ Examples: 
JavaBeans, Documentation Object Model (DOM), Eclipse Modeling Framework

§ Common best practice patterns: 
Transfer Objects, Cargo Beans, Data Objects, Non-transactional Data Objects, 
Replication Data Objects

§ Designed as a lightweight data container



20 Service Data Objects © 2004 IBM Corporation

Classifying Data APIs
Static vs Dynamic

§ Examples:
§ Entity EJB – static

§ JDBC Rowset - dynamic

§ Traditional design tradeoffs:
§ Useability

§ Rigidity

§ Runtime overhead

§ Design time overhead (code generation)

§ Compile time checking

§ Code completion capability

§ Flexibility



21 Service Data Objects © 2004 IBM Corporation

Data and Metadata APIs

AnySDO Metadata 
API, Java 
Introspection

AnyBothDisconnectedSDO

N/AJava 
Introspection

XMLStaticDisconnectedJAX-RPC

N/AJava 
Introspection

XMLStaticDisconnectedJAXB

XPath, XQueryXML InfoSetXMLDynamicDisconnectedDOM and SAX

UndefinedUndefinedRecord-basedDynamicDisconnectedJCA

JDOQLJava 
Introspection

Relational, 
Object

StaticConnectedJDO

EJBQLJava 
Introspection

RelationalStaticConnectedEntity EJB

SQLRelationalRelationalDynamicDisconnectedJDBC Cached 
Rowset

SQLRelationalRelationalDynamicConnectedJDBC Rowset

Query 
Language

MetaData APIData
Source

APIModel



22 Service Data Objects © 2004 IBM Corporation

Existing J2EE Architecture

Data Access APIs

Data APIs

Metadata Access APIs

Metadata APIs

Client

RDB

EIS

XML/XML Schema



23 Service Data Objects © 2004 IBM Corporation

SDO Architecture
Mediator Pattern

Data Access APIs

Data APIs

Metadata Access APIs

Metadata APIs

Client

RDB

EIS

XML/XML Schema

SDO



24 Service Data Objects © 2004 IBM Corporation

Service Data Object Runtime Architecture

Data Access APIs

Data APIs

Metadata Access APIs

Metadata APIs

Client

RDB

EIS

XML/XML Schema

Pluggable
Data

Mediators

Metadata Model

Data Model

Service Data Objects



25 Service Data Objects © 2004 IBM Corporation

SDO Design and Runtime Components

1. SDO Core
§ Data Objects
§ Data Graphs
§ Introspection APIs

2. SDO Data Mediator Services
§ Query back end data source
§ Create data graphs
§ Manage optimistic concurrency

3. SDO Tools
§ Code generators
§ Metamodel converters
§ Schema converters
§ Data modeling tools
§ Schema modeling tools

4. SDO Enabled Runtimes and Frameworks
§ Data binding to UI



26 Service Data Objects © 2004 IBM Corporation

SDO Core
UML Model



27 Service Data Objects © 2004 IBM Corporation

SDO Core
DataObjects (Page 1 of 2)

§ Next generation JavaBeans
§ Purpose is as a source independent data container

§ Primitives (Java/XML Schema like primitive types)

§ References to other data objects
§ Does not a provider of business logic methods

§ Examples:
§ XML Schema

DataObject would represent a complex type, with attributes being represented 
as primitives, and child complex type elements represented as references

§ Relational Database
DataObject might represent a row of data



28 Service Data Objects © 2004 IBM Corporation

SDO Core
DataObjects (Page 2 of 2)

§ Metadata introspection capabilities
§ Enables access to types, relationships, and constraints

§ Metadata can be generated from XML Schema, Java interfaces, XMI, et al

§ Dynamic interface or you can generate a statically-typed interface from 
metadata
§ Rich relationship integrity management

§ Supports 1:1, 1:n, and n:m relationships

§ Auto-manages inverse relationships

§ Supports containment and reference semantics

§ Event management facilities
§ XML friendly: supports XML Schema for metadata and XML as a data

source, and supports XPath expressions to get/set values (looking at 
XQuery)



29 Service Data Objects © 2004 IBM Corporation

SDO Core
DataGraph

§ Contains a single DataObject

§ References the schema for the DataObjects

§ Records change summary information accessible by mediators to provide 
optimistic concurrency control semantics

§ Flows as an XML Message (eg Datagraph.xsd)



30 Service Data Objects © 2004 IBM Corporation

SDO 
Data Mediator Services

§ Responsibilities
§ Query data source

§ Creating graphs of data containing data objects

§ Looks to see if concurrency control was violated

§ Applies data graph changes back to the data source

Data Mediator
Service

read

write

Data
SourceClient

DataGraph
DataObjects



31 Service Data Objects © 2004 IBM Corporation

Topology 1

§ Client talks directly to an in process mediator

Mediator

read

write

Data
SourceClient

DataGraph
DataObjects



32 Service Data Objects © 2004 IBM Corporation

Topology 2

Session Bean(s)

read

write

Data
SourceClient

DataGraph
DataObjects

Mediator

DataGraph
DataObjects

§ Client talks to a service, in this case a stateless session bean
§ The stateless session bean(s) talk to the mediator to access the data source
§ In this case, the mediator goes remotely to a data source

WebSphere Application Server



33 Service Data Objects © 2004 IBM Corporation

Topology 3

§ Client talks to a service, in this case a stateless session bean
§ The stateless session bean(s) talk to the mediator to access the data source 

(Note: Although the persistence form changes dramatically from Topology 2, 
the source code in the session bean(s) changes very little – the Mediator is 
acting as a data facade)
§ In this case, the mediator is mediating access to Entity EJBs
§ The WebSphere Entity EJB Container manages the Object/Relational

mapping of the Entity to the data source

Session 
Bean(s)

O/R

Data
SourceClient

DataGraph
DataObjects

Mediator

DataGraph
DataObjects

Entity EJBs

WebSphere Application Server



34 Service Data Objects © 2004 IBM Corporation

Topology 4

§ Client talks to a JAX-RPC based web service passing a 
DataGraph/DataObjects
§ The web service does its processing a returns DataGraph/DataObjects back 

to the client
§ It is quite possible that the black box looks like Topology 2 or 3 above, 

where the web service is assuming the same role as the session bean

JAX-RPC
Web ServiceClient

DataGraph
DataObjects

“Black Box”

WebSphere Application Server



35 Service Data Objects © 2004 IBM Corporation

Topology 5

§ Mediator potentially running as a stored procedure
§ Returns DataGraph/DataObjects back to the client
§ Takes DataGraph/DataObjects as parameters

Stored Procedure
Mediator

read

write

Data
SourceClient

DataGraph
DataObjects

DB2



36 Service Data Objects © 2004 IBM Corporation

Use Cases - XML

§ XML programming capabilities far exceed what is available today
§ Provides Java-XML data binding and XPath- and XQuery-based querying
§ Disconnected data operations
§ Under this architecture, the XML data source could be either an XML file, a 

native XML data store, or a relational database with XML features.



37 Service Data Objects © 2004 IBM Corporation

Use Cases - XML



38 Service Data Objects © 2004 IBM Corporation

Use Cases - EJB

§ The “Data Transfer Object” and “Data Access Object” design patterns are 
often used with EJBs

§ Data Transfer Objects are used to pass data between the presentation tier, 
the business tier and the persistence tier

§ The Data Transfer Object represents the data in a way that is independent 
of the underlying persistence technology

§ Data Access Objects abstract and encapsulate a data source by creating 
and using Data Objects as the neutral form of data across applications and 
data sources.

§ Today, developers implement these patterns manually. 



39 Service Data Objects © 2004 IBM Corporation

Use Cases - EJB



40 Service Data Objects © 2004 IBM Corporation

Use Cases - JDBC

§ JDBC returns results in a flat, tabular format that does not resemble the 
database structure

2770903/02/2002SusanHat 
Department

2756002/10/1999JackHat 
Department

2756005/17/2001BurtHat 
Department

2770906/01/1999JulieShoe 
Department

2756010/27/1989SamShoe 
Department

Zip 
Code

Hire DateNameDepartment



41 Service Data Objects © 2004 IBM Corporation

Use Cases - JDBC

§ The JDBC Mediator normalizes the data so that the underlying database 
relationships are represented

Shoe 
Department

Hat 
Department

Sam 
10/27/1989

Julie 
06/01/1999

Burt 
05/17/2001

Jack 
02/10/1999

Susan 
03/02/2002

27560

27709



42 Service Data Objects © 2004 IBM Corporation

Use Cases - JDBC

§ Old Way to get all shoe department employees:

while (resultSet.next()) {

§ String department = resultSet.getString(1);

§ if ( department.equals(“Shoe Department”) ) {

§ String employeeName = resultSet.getString(2);

§ employees.add(employeeName);

§ }

§ }

§ New way: 
List employees =shoeDepartment.getList(“employees”);    



43 Service Data Objects © 2004 IBM Corporation

Use Cases – Web Services

§ DataGraphs can be used for transporting data over the wire:



44 Service Data Objects © 2004 IBM Corporation

Sample Scenario

§ Prototypical J2EE technology set – servlet/session bean/entity bean
§ Insurance policy retrieval, and modification
§ Assume policy is viewable by end consumer as well as agent



45 Service Data Objects © 2004 IBM Corporation

Sample Scenario – Viewing/Updating an Insurance Policy
Traditional Best Practices using Connected/Disconnected Data

PolicyRetrieve.classPolicyViewController.jsp?User=Shane

PolicyView.jsp

UpdatePolicyController.jsp?User=Shane?PolicyDelta=… PolicyUpdate.class

Browser Client

Client
HTML

Controller/View
Servlet/JSP

Business Logic
Session Beans

Model
Entity Beans

Persistence
RDB

Make request to retrieve 
data required by view

Pass any parameters as
data objects

Initiate transaction, security check
Interrogate EJB entity model

Perform transactional processing
Create and fill disconnected data objects

Return disconnected data objects

Initiate transaction, security check
Interrogate EJB entity model

Perform transactional processing
Create and fill disconnected data objects

Return disconnected data objects

Format data objects
Scheme: JSP Tags, Scripting, or a data 

object aware fomatting framework

Format data objects
Scheme: JSP Tags, Scripting, or a data 

object aware fomatting framework

Click URL to view
insurance policy 

Click URL to view
insurance policy 

Modify the policy
(thus mutating the data objects)

Submit changes

Modify the policy
(thus mutating the data objects)

Submit changes

Update EJB entity model
with deltas

Update EJB entity model
with deltas

Pass data objects and 
deltas back to the 

transactional server

Pass data objects and 
deltas back to the 

transactional server

1

2 3

4

5

6

7



46 Service Data Objects © 2004 IBM Corporation

Disconnected Programming Model

§ Insurance policy view/update scenario demonstrates a traditional web based disconnected 
model:

1. Client makes policy view reqeust
2. Controller requests policy data from transactional server
3. Server starts transaction
4. Server retrieves data from transactional resource
5. Server copies data into non-transactional disconnected data objects

6. Server commits transaction
7. Controller combines data objects with render objects (widgets, tags, et al) to produce client view
8. Client updates non-transactional disconnected data objects, submits changes
9. Controller delegates changes to the transactional server
10. Server starts transaction
11. Server validates data concurrency semantics (see OCC)

12. Server persists changes back to the transactional resource
13. Server commits transaction

§ Data is “checked out” of the data store for some “period” of time (but not locked)
§ Possibility exists that the data might become stale
§ Possibility exists that someone else might change the same data elsewhere

§ The disconnect data scenario applies to several other enterprise architecture use models:
§ Offline mode (Lotus Notes replication semantics, PDA synchronization, et al)
§ B2B SCM/PRM – Company A obtains data from company B, modifies, returns updated data



47 Service Data Objects © 2004 IBM Corporation

Optimistic Concurrency Control (OCC)
Popular strategy
§ Scenario:

My insurance agent and I are updating my insurance policy concurrently

§ The optimistic concurrency control strategy supports this use model
§ Increased concurrency

§ Increased throughput

§ Collision detection strategy
§ Disconnected data objects maintain primary key, old value, and new value

§ When disconnected data object changes are written to the database, the old 
value is first checked to make sure it is still the same, before the new value is 
applied

§ If the old value in the DataObject differs from the current value in the 
transactional data store, an error is thrown to the application, otherwise the 
update is completed

§ Note: there are multiple strategies for managing OCC



48 Service Data Objects © 2004 IBM Corporation

Several best practice patterns and strategies

§ Separation of concerns between data fetch and data render logic
§ Session façade pattern with EJB Entity CMP to represent business model
§ Actions aggregated into a single transaction providing ACID reads/updates
§ Transfer objects used between view/controller and the transactional tier
§ Application of data render objects to transfer objects for efficient and 

reusable user interface programming
§ Server transaction and connection resource utilization minimized
§ Data Object change summary used to optimize transactional update

operation
§ Optimistic concurrency pattern leveraged to enable high transaction 

throughput

§ Note: Items affected by SDO are in the Blue font



49 Service Data Objects © 2004 IBM Corporation

Applying SDO to the Insurance View/Update Scenario

§ Transfer objects used between view/controller and the transactional tier
§ The transfer objects could use the rich DataGraph/DataObject data types

§ The view/controller could communicate directly with an Entity CMP mediator in order to obtain the 
disconnected data.  If processed needed to occur in addition to the data fetch – the session bean could 
use the Entity CMP mediator.

§ Application of data render objects to transfer objects for effic ient and reusable user interface 
programming
§ SDO enables frameworks like JSF to bind their widget set to a single unified data representation format

§ Since SDO is likely to enable constrain frameworks, those can be leveraged by the user interface 
componentry to provide client side cascading delete semantics, field uniqueness, read-only semantics, et 
al

§ Disconnected and OCC programming
§ The change set automatically maintained by the DataGraph enables the data mediators to provide 

optimistic concurrency control for the application programmer

§ Maintaining change information on the client enables the application to only send back the change sets to 
the server optimizing network bandwidth usage

§ How much of the model would have to change if the data source changed from Relational to 
IMS (or vice versa)?
§ Leveraging the mediator pattern and the unified DataGraph/DataObject representation scheme minimizes 

the ripple effect resulting from either an data access API or data representation change

§ Although not mentioned above, SDO provides several application server caching opportunities 
to further enhance application performance and scalability



50 Service Data Objects © 2004 IBM Corporation

SDO Release Status

§ WSADIE 5.1
§ EMF Project – Can import XML Schema, Java interface, et al, and generate 

statically typed EMF Java objects

§ Precursor of SDO (without detached programming support, XML serialization, 
enhanced XML schema support, et al)

§ WSAD 5.1.2
§ Contains JSF user interface components and tooling

§ SDO DataGraph/DataObject under the covers

§ Relational mediator (dynamically typed DataObjects only)



51 Service Data Objects © 2004 IBM Corporation

Competitive Landscape

§ BEA
§ XML Beans

§ Transition to SDO

§ Microsoft
§ ADO.Net (.Net v1.1 System.Data classes)

§ Relational data model
§ XML Mediators (.Net v2 System.Xml classes)

§ XML data model

§ Microsoft ADO.Net disconnected data set interoperability

§ ADO.Net provides a Dataset – much like Datagraph, but it is constrained to relational 
semantics (RDM)
§ ADO.Net provides an on the wire format called Diffgram
§ Potential exists to enable some degree of “on the wire” interoperability between 

Microsoft .Net and J2EE detached data set objects flowing between services
§ Many details need to be looked at…



52 Service Data Objects © 2004 IBM Corporation

Resource References

§ IBM DeveloperWorks
§ http://www-106.ibm.com/developerworks/java/library/j-commonj-sdowmt/

§ SDO Specification
§ SDO Whitepaper

§ Eclipse Modeling Framework (EMF)
§ http://www.eclipse.org/emf

§ Announcement press
§ http://xml.coverpages.org/ni2003-11-25-a.html

§ http://www.infoworld.com/article/03/11/25/HNibmbeajava_1.html
§ http://zdnet.com.com/2100-1104_2-5111567.html
§ http://www.techweb.com/wire/story/TWB20031125S0010

§ Transfer Object Pattern
§ http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html

§ AlphaWorks ETTK – SDO Technology Preview
§ http://www.alphaworks.ibm.com

§ The Eclipse Modeling Framework
§ Budinsky, Merks, et al

§ A First Look at ADO.NET and System.Xml v2.0
§ Homer, Sussman, Fussell



53 Service Data Objects © 2004 IBM Corporation

Questions?

Data Mediator
Service

read

write

Data
SourceClient

DataGraph
DataObjects


